Since *D* is about 25 cm, to have a magnification of six, one needs a convex lens of focal length, f = 5 cm.

Note that m = h'/h where *h* is the size of the object and *h'* the size of the image. This is also the ratio of the angle subtended by the image to that subtended by the object, if placed at *D* for comfortable viewing. (Note that this is not the angle actually subtended by the object at the eye, which is h/u.) What a single-lens simple magnifier achieves is that it allows the object to be brought closer to the eye than *D*.

We will now find the magnification when the image is at infinity. In this case we will have to obtained the *angular* magnification. Suppose the object has a height *h*. The maximum angle it can subtend, and be clearly visible (without a lens), is when it is at the near point, i.e., a distance *D*. The angle subtended is then given by

$$\tan \theta_o = \left(\frac{h}{D}\right) \approx \theta_o$$

We now find the angle subtended at the eye by the image when the object is at *u*. From the relations

$$\frac{h'}{h} = m = \frac{v}{u}$$

we have the angle subtended by the image

 $\tan \theta_i = \frac{h'}{-v} = \frac{h}{-v} \cdot \frac{v}{u} = \frac{h}{-u} \approx \theta$. The angle subtended by the object, when it is at u = -f.

$$\theta_i = \left(\frac{h}{f}\right)$$

(9.41)

(9.40)

as is clear from Fig. 9.27(c). The angular magnification is, therefore

$$m = \left(\frac{\theta_i}{\theta_o}\right) = \frac{D}{f} \tag{9.42}$$

This is one less than the magnification when the image is at the near point, Eq. (9.39), but the viewing is more comfortable and the difference in magnification is usually small. In subsequent discussions of optical instruments (microscope and telescope) we shall assume the image to be at infinity.

A simple microscope has a limited maximum magnification (≤ 9) for realistic focal lengths. For much larger magnifications, one uses two lenses, one compounding the effect of the other. This is known as a *compound microscope*. A schematic diagram of a compound microscope is shown in Fig. 9.28. The lens nearest the object, called the *objective*, forms a real, inverted, magnified image of the object. This serves as the object for the second lens, the *eyepiece*, which functions essentially like a simple