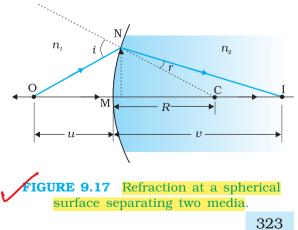
Ray Optics and Optical Instruments

available decorative lamp with fine plastic fibres with their free ends forming a fountain like structure. The other end of the fibres is fixed over an electric lamp. When the lamp is switched on, the light travels from the bottom of each fibre and appears at the tip of its free end as a dot of light. The fibres in such decorative lamps are optical fibres.

The main requirement in fabricating optical fibres is that there should be very little absorption of light as it travels for long distances inside them. This has been achieved by purification and special preparation of materials such as quartz. In silica glass fibres, it is possible to transmit more than 95% of the light over a fibre length of 1 km. (Compare with what you expect for a block of ordinary window glass 1 km thick.)

9.5 REFRACTION AT SPHERICAL SURFACES AND BY LENSES


We have so far considered refraction at a plane interface. We shall now consider refraction at a spherical interface between two transparent media. An infinitesimal part of a spherical surface can be regarded as planar and the same laws of refraction can be applied at every point on the surface. Just as for reflection by a spherical mirror, the normal at the point of incidence is perpendicular to the tangent plane to the spherical surface at that point and, therefore, passes through its centre of curvature. We first consider refraction by a single spherical surface and follow it by thin lenses. A thin lens is a transparent optical medium bounded by two surfaces; at least one of which should be spherical. Applying the formula for image formation by a single spherical surface successively at the two surfaces of a lens, we shall obtain the lens maker's formula and then the lens formula.

9.5.1 Refraction at a spherical surface

Figure 9.17 shows the geometry of formation of image *I* of an object *O* on the principal axis of a spherical surface with centre of curvature C, and radius of curvature *R*. The rays are incident from a medium of refractive index n_1 , to another of refractive index n_2 . As before, we take the aperture

(or the lateral size) of the surface to be small compared to other distances involved, so that small angle approximation can be made. In particular, NM will be taken to be nearly equal to the length of the perpendicular from the point N on the principal axis. We have, for small angles,

$$\tan \angle \text{NOM} = \frac{\text{MN}}{\text{OM}}$$
$$\tan \angle \text{NCM} = \frac{\text{MN}}{\text{MC}}$$
$$\tan \angle \text{NIM} = \frac{\text{MN}}{\text{MI}}$$

