Current Electricity

EXAMPLE

1)

 $V_{AB} = 2 \text{ A} \times 2 \Omega = 4 \text{ V}$ The voltage drop across BC is $V_{BC} = 2 \text{ A} \times 1 \Omega = 2 \text{ V}$

Finally, the voltage drop across CD is

$$V_{CD} = 12 \ \Omega \times I_3 = 12 \ \Omega \times \left(\frac{2}{3}\right) A = 8 \text{ V.}$$

This can alternately be obtained by multiplying total current between C and D by the equivalent resistance between C and D, that is,

 V_{CD} = 2 A × 4 Ω = 8 V

Note that the total voltage drop across AD is 4 V + 2 V + 8 V = 14 V. Thus, the terminal voltage of the battery is 14 V, while its emf is 16 V. The loss of the voltage (= 2 V) is accounted for by the internal resistance 1 Ω of the battery [2 A × 1 Ω = 2 V].

3.12 Cells in Series and in Parallel

Like resistors, cells can be combined together in an electric circuit. And like resistors, one can, for calculating currents and voltages in a circuit, replace a combination of cells by an equivalent cell.

$$\begin{array}{c|cccc} \varepsilon_1 & \varepsilon_2 & \varepsilon_{eq} & I \\ \bullet & I & & I & & \\ A & I & r_1 & B & r_2 & C & \blacksquare & A & I & r_{eq} & C \end{array}$$

FIGURE 3.20 Two cells of emf's ε_1 and ε_2 in the series. r_1 , r_2 are their internal resistances. For connections across A and C, the combination can be considered as one cell of emf ε_{ea} and an internal resistance r_{ea} .

Consider first two cells in series (Fig. 3.20), where one terminal of the two cells is joined together leaving the other terminal in either cell free. ε_1 , ε_2 are the emf's of the two cells and r_1 , r_2 their internal resistances, respectively.

Let V(A), V(B), V(C) be the potentials at points A, B and C shown in Fig. 3.20. Then V(A) - V(B) is the potential difference between the positive and negative terminals of the first cell. We have already calculated it in Eq. (3.57) and hence,

$$V_{\rm AB} \equiv V(A) - V(B) = \varepsilon_1 - Ir_1 \tag{3.60}$$

Similarly,

$$V_{\rm BC} \equiv V(\rm B) - V(\rm C) = \varepsilon_2 - Ir_2$$
(3.6)

Hence, the potential difference between the terminals A and C of the combination is

$$V_{AC} \equiv V(A) - V(C) = V(A) - V(B) + V(B) - V(C)$$

= $(\varepsilon_1 + \varepsilon_2) - I(r_1 + r_2)$ (3.62)