Physics

depending on their resistivities, in an increasing order of their values. Metals have low resistivities in the range of $10^{-8} \Omega m$ to $10^{-6} \Omega m$. At the other end are insulators like ceramic, rubber and plastics having resistivities 10^{18} times greater than metals or more. In between the two are the <u>semiconductors</u>. These, however, have resistivities characteristically decreasing with a rise in temperature. The resistivities of <u>semiconductors</u> are also affected by presence of small amount of impurities. This last feature is exploited in use of semiconductors for electronic devices.

TABLE 3.1 RESISTIVITIES OF SOME MATERIALS		
Material	Resistivity, ρ (Ω m) at 0°C	Temperature coefficient of resistivity, α (°C) ⁻¹ $\alpha = \frac{1}{\rho} \frac{d\rho}{dT}$ at 0°C
Conductors Silver Copper Aluminium Tungsten Iron Platinum Mercury Nichrome (alloy of Ni, Fe, Cr) Manganin (alloy)	1.6×10^{-8} 1.7×10^{-8} 2.7×10^{-8} 5.6×10^{-8} 10×10^{-8} 11×10^{-8} 98×10^{-8} $\sim 100 \times 10^{-8}$ 48×10^{-8}	$\begin{array}{c} 0.0041\\ 0.0068\\ 0.0043\\ 0.0045\\ 0.0065\\ 0.0039\\ 0.0009\\ 0.0009\\ 0.0004\\ \end{array}$
Semiconductors Carbon (graphite) Germanium Silicon Insulators Pure Water Glass Hard Rubber NaCl Fused Quartz	3.5×10^{-5} 0.46 2300 $P_{si} \gg P_{c}$ 2.5×10^{5} $10^{10} - 10^{14}$ $10^{13} - 10^{16}$ $\sim 10^{14}$ $\sim 10^{16}$	$\begin{array}{c} -0.0005 \\ -0.05 \\ -0.07 \end{array} \mathcal{O}_{4} = -1 \mathcal{V}_{4} \\ \mathcal{O}_{4} = -1 \mathcal{V}_{4} \\ \mathcal{O}_{5} = -1 \mathcal{V}_{5} \\ \mathcal{O}_{5} = $

Commercially produced resistors for domestic use or in laboratories are of two major types: *wire bound resistors* and *carbon resistors*. Wire bound resistors are made by winding the wires of an alloy, viz., manganin, constantan, nichrome or similar ones. The choice of these materials is dictated mostly by the fact that their resistivities are relatively insensitive to temperature. These resistances are typically in the range of a fraction of an ohm to a few hundred ohms.