Physics with Bose Sir, Website: Physicseducour.in

For example, 12.9 g - 7.06 g, both specified to three significant figures, cannot properly be evaluated as 5.84 g but only as 5.8 g, as uncertainties in subtraction or addition combine in a different fashion (smallest number of decimal places rather than the number of significant figures in any of the number added or subtracted).

(3) The relative error of a value of number specified to significant figures depends not only on n but also on the number itself.

For example, the accuracy in measurement of mass 1.02 g is ± 0.01 g whereas another measurement 9.89 g is also accurate to ± 0.01 g. The relative error in 1.02 g is

> $= (\pm 0.01/1.02) \times 100\%$ = ± 1%

Similarly, the relative error in 9.89 g is $= (\pm 0.01/9.89) \times 100\%$ $= \pm 0.1 \%$

Finally, remember that **intermediate results in** a multi-step computation should be

calculated to one more significant figure in every measurement than the number of digits in the least precise measurement.

These should be justified by the data and then the arithmetic operations may be carried out; otherwise rounding errors can build up. For example, the reciprocal of 9.58, calculated (after rounding off) to the same number of significant figures (three) is 0.104, but the reciprocal of 0.104 calculated to three significant figures is 9.62. However, if we had written 1/9.58 = 0.1044 and then taken the reciprocal to three significant figures, we would have retrieved the original value of 9.58.

This example justifies the idea to retain one more extra digit (than the number of digits in the least precise measurement) in intermediate steps of the complex multi-step calculations in order to avoid additional errors in the process of rounding off the numbers.

2.8 DIMENSIONS OF PHYSICAL QUANTITIES

The nature of a physical quantity is described by its dimensions. All the physical quantities represented by derived units can be expressed in terms of some combination of seven fundamental or base quantities. We shall call these base quantities as the seven dimensions of the physical world, which are denoted with square brackets []. Thus, length has the dimension [L], mass [M], time [T], electric current [A], thermodynamic temperature [K], luminous intensity [cd], and amount of substance [mol]. The dimensions of a physical quantity are the powers (or exponents) to which the base quantities are raised to represent that quantity. Note that using the square brackets [] round a quantity means that we are dealing with '**the dimensions of**' the quantity.

In mechanics, all the physical quantities can be written in terms of the dimensions [L], [M] and [T]. For example, the volume occupied by an object is expressed as the product of length, breadth and height, or three lengths. Hence the dimensions of volume are $[L] \times [L] \times [L] = [L]^3 = [L^3]$. As the volume is independent of mass and time, it is said to possess zero dimension in mass [M°], zero dimension in time [T°] and three dimensions in length.

Similarly, force, as the product of mass and acceleration, can be expressed as

Force = mass × acceleration

= mass \times (length)/(time)²

The dimensions of force are [M] $[L]/[T]^2 =$ [M L T⁻²]. Thus, the force has one dimension in mass, one dimension in length, and -2dimensions in time. The dimensions in all other base quantities are zero.

Note that in this type of representation, the magnitudes are not considered. It is the quality of the type of the physical quantity that enters. Thus, a change in velocity, initial velocity, average velocity, final velocity, and speed are all equivalent in this context. Since all these quantities can be expressed as length/time, their dimensions are [L]/[T] or $[L T^{-1}]$.

2.9 DIMENSIONAL FORMULAE AND **DIMENSIONAL EQUATIONS**

The expression which shows how and which of the base quantities represent the dimensions of a physical quantity is called the *dimensional* formula of the given physical quantity. For example, the dimensional formula of the volume is [M° L³ T°], and that of speed or velocity is [M° L T⁻¹]. Similarly, [M° L T⁻²] is the dimensional formula of acceleration and [M L-3 T°] that of mass density.

An equation obtained by equating a physical quantity with its dimensional formula is called the **dimensional equation** of the physical Physics with Bose Sir, Website: Physicseducour.in