Table 2.4 Range and order of masses

Object	Mass (kg)
Electron	10 ⁻³⁰
Proton	10-27
Uranium atom	10-25
Red blood cell	10-13
Dust particle	10-9
Rain drop	10-6
Mosquito	10-5
Grape	10-3
Human	102
Automobile	10 ³
Boeing 747 aircraft	108
Moon	1023
Earth	1025
Sun	1030
Milky way galaxy	1041
Observable Universe	1055

2.5 MEASUREMENT OF TIME

To measure any time interval we need a clock. We now use an **atomic standard of time**, which is based on the periodic vibrations produced in a cesium atom. This is the basis of the **cesium** clock, sometimes called atomic clock, used in the national standards. Such standards are available in many laboratories. In the cesium atomic clock, the second is taken as the time needed for 9,192,631,770 vibrations of the radiation corresponding to the transition between the two hyperfine levels of the ground state of cesium-133 atom. The vibrations of the cesium atom regulate the rate of this cesium atomic clock just as the vibrations of a balance wheel regulate an ordinary wristwatch or the vibrations of a small quartz crystal regulate a quartz wristwatch.

The cesium atomic clocks are very accurate. In principle they provide portable standard. The national standard of time interval 'second' as well as the frequency is maintained through four cesium atomic clocks. A cesium atomic clock is used at the National Physical Laboratory (NPL), New Delhi to maintain the Indian standard of time.

In our country, the NPL has the responsibility of maintenance and improvement of physical standards, including that of time, frequency, etc. Note that the Indian Standard Time (IST) is linked to this set of atomic clocks. The efficient cesium atomic clocks are so accurate that they Physics with Bose Sir, Website: Physicseducour.in For $Exp1 \rightarrow (ever)_1 = |3.678 - 3.5| = 0.178 \text{ cm}; (LC)_1 = 0.1 \text{ cm}$ impart the uncertainty in time realisation as

 $\pm 1 \times 10^{-13}$, i.e. 1 part in 10^{13} . This implies that the uncertainty gained over time by such a device is less than 1 part in 10^{13} ; they lose or gain no more than 3 us in one year. In view of the tremendous accuracy in time measurement, the SI unit of length has been expressed in terms the path length light travels in certain interval of time (1/299, 792, 458 of a second) (Table 2.1).

The time interval of events that we come across in the universe vary over a very wide range. Table 2.5 gives the range and order of some typical time intervals.

You may notice that there is an interesting coincidence between the numbers appearing in Tables 2.3 and 2.5. Note that the ratio of the longest and shortest lengths of objects in our universe is about 10⁴¹. Interestingly enough, the ratio of the longest and shortest time intervals associated with the events and objects in our universe is also about 10⁴¹. This number, 10⁴¹ comes up again in Table 2.4, which lists typical masses of objects. The ratio of the largest and smallest masses of the objects in our universe is about $(10^{41})^2$. Is this a curious coincidence between these large numbers purely accidental?

2.6 ACCURACY, PRECISION OF INSTRUMENTS AND ERRORS IN MEASUREMENT

Measurement is the foundation of all experimental science and technology. The result of every measurement by any measuring instrument contains some uncertainty. This uncertainty is called error. Every calculated quantity which is based on measured values, also has an error. We shall distinguish between two terms: accuracy and precision. The accuracy of a measurement is a measure of how close the measured value is to the true value of the quantity. Precision tells us to what resolution or limit the quantity is measured.

The accuracy in measurement may depend on several factors, including the limit or the resolution of the measuring instrument. For example, suppose the true value of a certain length is near 3.678 cm. In one experiment, using a measuring instrument of resolution 0.1 cm, the measured value is found to be 3.5 cm, while in another experiment using a measuring device of greater resolution, say 0.01 cm, the length is determined to be 3.38 cm. The first measurement has more accuracy (because it is

For $E_{x2} \rightarrow (e_{x0})_{2} = |3.678 - 3.38| = 0.298 \text{ cm} + (LC)_{2} = 0.01 \text{ cm}$