und Physics with Bose Sir, Website: Physicseducour.in

international usage in scientific, technical, industrial and commercial work. Because SI units used decimal system, conversions within the system are quite simple and convenient. We shall follow the SI units in this book.

In SI, there are seven base units as given in Table 2.1. Besides the seven base units, there are two more units that are defined for (a) plane angle $d\theta$ as the ratio of length of arc ds to the radius r and (b) solid angle $d\Omega$ as the ratio of the intercepted area dA of the spherical surface, described about the apex O as the centre, to the square of its radius r, as shown in Fig. 2.1(a) and (b) respectively. The unit for plane angle is radian with the symbol rad and the unit for the solid angle is steradian with the symbol sr. Both these are dimensionless quantities.

17

(b) **Fig. 2.1** Description of (a) plane angle $d\theta$ and (b) solid angle $d\Omega$.

Base	SI Units		
quantity	Name	Symbol	Definition
Length	metre	m	The metre is the length of the path travelled by light in vacuum during a time interval of $1/299,792,458$ of a second. (1983)
Mass	kilogram	kg	The kilogram is equal to the mass of the international prototype of the kilogram (a platinum-iridium alloy cylinder) kept at international Bureau of Weights and Measures, at Sevres, near Paris, France. (1889)
Time	second	S	The second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium-133 atom. (1967)
Electric current	ampere	А	The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newton per metre of length. (1948)
Thermo dynamic Temperature	kelvin	K	The kelvin, is the fraction $1/273.16$ of the thermodynamic temperature of the triple point of water. (1967)
Amount of substance	mole	mol	The mole is the amount of substance of a system, which contains as many elementary entities as there are atoms in 0.012 kilogram of carbon - 12. (1971)
Luminous intensity	candela	cd	The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of $1/683$ watt per steradian. (1979)

Table 2.1 SI Base Quantities and Units*

The values mentioned here need not be remembered or asked in a test. They are given here only to indicate the extent of accuracy to which they are measured. With progress in technology, the measuring techniques get improved leading to measurements with greater precision. The definitions of base units are revised to keep up with this progress.

Physics with Bose Sir, Website: Physicseducour.in