Class XI

Motion in Straight Line

Let x_1 and x_2 be the positions of an object at time t_1 and t_2 . Then its displacement, denoted by Δx , in time $\Delta t = (t_2 - t_1)$, is given by the difference between the final and initial positions.

So, Displacement = $\Delta x = x_2 - x_1$ [1

(We use the Greek letter delta (Δ) to denote a change in a quantity.)

• If $x_2 > x_1$, Δx is positive; and if $x_2 < x_1$, Δx is negative. If $x_2 = x_1$, Δx is zero. Thus displacement can be positive, negative or zero.

Comparison of Distance and Displacement

- 1. The magnitude of the displacement for a course of motion may be zero but the corresponding path length is not zero
- 2. The displacement of a moving body can be positive (+ve), negetive (-ve) or zero but the distance travelled by a body is always positive (+ve).
- 2. The value of displacement may increase or decrease but the value of distance always increases.
- 3. The magnitude of displacement is less than or equal to the distance travelled by the body in same time interval.

i.e. | displacement | < distance

Both can be equal only if the body moves in the same direction throughout.