Motion in straight line

v = u + at;
s = ut +
$$\frac{1}{2}at^2$$
 and $v^2 = u^2 + 2as$
is to 0 = u - gt
h = ut - $\frac{1}{2}gt^2$ and 0 = u^2 - 2gh

reduce

[the velocty at the highest point is v = 0]

From the above equations we get

u = gt ... (4)
h =
$$\frac{1}{2}$$
gt² ... (5)
u² = 2gh ... (6)

These equations can be used to solve most of the problems of bodies projected vertically up. Let us summerise the above as: If the initial velocity of projection is given, we get three simple equations as:

$$h = \frac{u^2}{2g}$$
[7] , $t = \frac{u}{g}$ [8] or $t = \sqrt{\frac{2h}{g}}$ [9]

IMPORTANT POINTS

- In case of motion under gravity for a given body, mass, acceleration, and mechanical (1) energy remain constant while speed, velocity, momentum, kinetic energy and potential energy change.
- The motion is independent of the mass of the body, as in any equation of motion, (2) mass is not involved. This is why a heavy and lighter body when released from the same height, reach the ground simultaneously and with same velocity.

i.e
$$t = \sqrt{(2h/g)}$$
 and $v = \sqrt{2gh}$

However, momentum, kinetic energy or potential energy depend on the mass of the body (all \propto mass)

(3) As from equation (5) time taken to reach a height h,

$$\mathbf{t}_{\rm u} = \sqrt{\left(2h/g\right)}$$

Similarly, time taken to fall down through a distance h [from Eq(2)],

physicseducour.in // physics.educour.in