CLASS 11

EXAMPLE BASED ON KINEMATIC EQUATIONS OF MOTION

Example.1 The velocity acquired by a body moving with uniform acceleration is 20 m/s in first 2 sec and 40 m/s in first 4 sec. Calculate initial velocity.

Solution.	$a = \frac{V_2 - V_1}{t_2 - t_1}$			V_1 V_2
$a = \frac{40}{4}$	$\frac{0-20}{1-2} = \frac{20}{2} = 10 \mathrm{m/s^2}$	20-	$t = 0$ $t_1 = 2 set$	ec $t_2 = 4 \sec t_2$
Now,	v = u + at			
	$v_1 = u + at_1$			
\Rightarrow	$20 = u + 10 \times 2$			
\Rightarrow	$20 = u + 20 \implies$	u = 0 m / s	Ans	

Example.2 A particle starts with initial velocity 2.5 m/s along the x direction and accelerates uniformly at the rate 50 cm/s². Find time taken to increase the velocity to 7.5 m/s.

Example.3 A particle starts with a constant acceleration. At a time t second speed is found to be 100 m/s and one second later speed becomes 150 m/s. Find seducour acceleration of the particle.

From equation (1) of motion v = u + atSolution.

$$100 = 0 + at$$

Now consider velocity one second later -

$$v' = 0 + a(t+1)$$

$$\Rightarrow 150 = a(t+1) \dots (2)$$

On subtracting equation (1) from equation (2)

 $a = 50 \, \text{m/s}^2$

physicseducour.in // physics.educour.in