the point x = 0. Find the acceleration.

Solution. $\mathbf{a} = \frac{d\mathbf{v}}{dt} = \alpha \frac{d}{dt} \sqrt{\mathbf{x}} = \alpha \cdot \frac{1}{2} \mathbf{x}^{-1/2} \cdot \frac{d\mathbf{x}}{dt} \qquad \left[\because \frac{dx}{dt} = V = \alpha \sqrt{x} \right]$ $\mathbf{a} = \alpha \cdot \frac{1}{2\sqrt{x}} \cdot \alpha \sqrt{x} \implies \mathbf{a} = \frac{\alpha^2}{2}$ Example 8 A particle located at $\mathbf{x} = 0$ at time $\mathbf{t} = 0$, starts more

Example 8. A particle located at x = 0 at time t = 0, starts moving along the positive x-direction with a velocity *v* that varies as $v = a\sqrt{x}$. The displacement of the particle varies with time as

**(a) t^2 (b) t (c) $t^{1/2}$ (d) t^3 (A.I.E.E.E 2006) Solution. Given that $\mathbf{v} = \alpha \sqrt{\mathbf{x}}$ or $\frac{d\mathbf{x}}{d\mathbf{t}} = \alpha \sqrt{\mathbf{x}}$ $\therefore \quad \frac{d\mathbf{x}}{\sqrt{\mathbf{x}}} = \alpha \, d\mathbf{t}$ or $\int_0^x \frac{d\mathbf{x}}{\sqrt{\mathbf{x}}} = \int_0^t \alpha \, d\mathbf{t}$ $\begin{bmatrix} 2\sqrt{\mathbf{x}} \end{bmatrix}_0^x = \begin{bmatrix} \alpha . t \end{bmatrix}_0^t \implies 2\sqrt{\mathbf{x}} = \alpha . t$ Hence $Or \quad \mathbf{x} = \frac{\alpha^2 . t^2}{4} \implies \mathbf{x} \propto t^2$

Example 9. The position x of the particle w.r.t. time t along x-axis is given by $x=9t^2-t^3$, where x is in metre and t is in sec. What will be the position of this particle when it achives maximum speed along +x direction? **[AIPMT 2007]**

Solution. For speed to be maximum, the acceleration must be zero, i.e. $\frac{dv}{dt} = 0$

$$\therefore \quad x = 9t^2 - t^3 \implies \quad v = \frac{dx}{dt} = 18t - 3t^2 \implies \quad a = \frac{dv}{dt} = 18 - 6t$$

For a = 0, t = 3sec. Putting this value of t in the equation of x, we get

$$x=9(3^2)-3^3 = 81-27=54m$$

Physics with Bose Sir, Web: Physicseducour.in