USE OF CALCULUS IN MOTION IN ONE DIMENSIONS

Example 1. The displacement of a particle is given by $y = a + bt + ct^2 + dt^4$. Find the acceleration of a particle.

Solution. $v = \frac{dy}{dt} = \frac{d}{dt}(a + bt + ct^2 + dt^4) = b + 2ct + 4dt^3$ So, acceleration is $a = \frac{dv}{dt} = 2c + 12dt^2$

Example 2 If the displacement of a particle is $(2t^2 + t + 5)$ meter then, what will be acceleration at t = 5 sec.

Solution. $v = \frac{dx}{dt} = \frac{d}{dt} (2t^2 + t + 5) = 4t + 1 \text{ m/s and} \quad a = \frac{dv}{dt} = \frac{d}{dt} (4t + 1) \quad a = 4 \text{ m/s}^2$

Example 3. The velocity of a perticle is $V = V_0 + gt + ft^2$. If its position is x = 0 at t =0, then its displacement after unit time (t=1)is [AIEEE 2007]

(a)
$$V_0 + 2g + 3f$$
 (b) $V_0 + \frac{g}{2} + \frac{f}{3}$ (c) $V_0 + \frac{g}{2} + f$ (d) $V_0 + g + f$

Solution. $\therefore \frac{dx}{dt} = V = V_0 + gt + ft^2 \implies dx = (V_0 + gt + ft^2) dt$

Integrating both the sides, we get $\int_{0}^{x} dx = \int_{0}^{t} (V_{0} + gt + ft^{2}) dt$

Or
$$x = V_0 + g \frac{t^2}{2} + f \frac{t^3}{3}$$

So, at t =1 , we get $x = V_0 + \frac{g}{2} + \frac{f}{3}$

Example 4. The motion of a particle along a straight line is described by equation $x=8+12t-t^3$. Where, x is in metre and t is in sec. The retardation of the particle when its velocity becomes zero, is **[AIPMT 2012]**

(a) 24
$$m/s^2$$
 (b) zero (c) 6 m/s^2 (d) 12 m/s^2

Solution. Since $x=8+12t-t^3$.