PHYSICS with BOSE Sir ; Website : physicseducour.in

PHYSICS

a given vector into two component vectors along a set of two vectors – all the three lie in the same plane. It is convenient to resolve a general vector along the axes of a rectangular coordinate system using vectors of unit magnitude. These are called unit vectors that we discuss now. A unit vector is a vector of unit magnitude and points in a particular direction. It has no dimension and unit. It is used to specify a direction only. Unit vectors along the *x*-, *y*- and *z*-axes of a rectangular coordinate system are denoted by $\hat{\mathbf{i}}_{,,j}$ and $\hat{\mathbf{k}}_{,j}$ respectively, as shown in Fig. 4.9(a).

Since these are unit vectors, we have

$$\left| \hat{\mathbf{i}} \right| = \left| \hat{\mathbf{j}} \right| = \left| \hat{\mathbf{k}} \right| = 1$$
 (4.9)

These unit vectors are perpendicular to each other. In this text, they are printed in bold face with a cap (^) to distinguish them from other vectors. Since we are dealing with motion in two dimensions in this chapter, we require use of only two unit vectors. If we multiply a unit vector,

say $\hat{\mathbf{n}}$ by a scalar, the result is a vector

 $\lambda = \lambda \hat{\mathbf{n}}$. In general, a vector **A** can be written as

$$\mathbf{A} = |\mathbf{A}| \, \hat{\mathbf{n}} \tag{4.10}$$

where $\hat{\mathbf{n}}$ is a unit vector along **A**.

We can now resolve a vector **A** in terms of component vectors that lie along unit vectors

 $\hat{\mathbf{i}}$ and \mathbf{j} . Consider a vector \mathbf{A} that lies in *x-y* plane as shown in Fig. 4.9(b). We draw lines from the head of \mathbf{A} perpendicular to the coordinate axes as in Fig. 4.9(b), and get vectors \mathbf{A}_1 and \mathbf{A}_2 such that $\mathbf{A}_1 + \mathbf{A}_2 = \mathbf{A}$. Since \mathbf{A}_1 is parallel to $\hat{\mathbf{i}}$

and $\mathbf{A}_{\mathbf{j}}$ is parallel to $\hat{\mathbf{j}}$, we have :

$$\mathbf{A_1} = A_x \, \hat{\mathbf{i}}, \, \mathbf{A_2} = A_y \, \hat{\mathbf{j}} \qquad (4.11)$$
where A_x and A_y are real numbers.
Thus, $\mathbf{A} = A_x \, \hat{\mathbf{i}} + A_y \, \hat{\mathbf{j}} \qquad (4.12)$

This is represented in Fig. 4.9(c). The quantities A_x and A_y are called *x*-, and *y*- components of the vector **A**. Note that A_x is itself not a vector, but

 A_x **i** is a vector, and so is A_y **j**. Using simple trigonometry, we can express A_x and A_y in terms of the magnitude of **A** and the angle θ it makes with the *x*-axis :

$$A_{x} = A \cos \theta$$

$$A_{y} = A \sin \theta$$
(4.13)

As is clear from Eq. (4.13), a component of a vector can be positive, negative or zero depending on the value of θ .

Now, we have two ways to specify a vector **A** in a plane. It can be specified by :

(i) its magnitude *A* and the direction θ it makes with the *x*-axis; or

(ii) its components A_r and A_{μ}

If A and θ are given, A_x and A_y can be obtained using Eq. (4.13). If A_x and A_y are given, A and θ can be obtained as follows :

$$A_x^2 + A_y^2 = A^2 \cos^2 \theta + A^2 \sin^2 \theta$$
$$= A^2$$
$$\bigvee A = \sqrt{A_x^2 + A_y^2}$$
(4.14)

And
$$\tan \theta = \frac{A_y}{A_x}, \quad \theta = \tan^{-1} \frac{A_y}{A_x}$$
 (4.15)

Fig. 4.9 (a) Unit vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ lie along the *x*-, *y*-, and *z*-axes. (b) A vector **A** is resolved into its components A₂ and A₃ along *x*-, and *y*- axes. (c) **A**, and **A**, expressed in terms of $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$.

Or,

PHYSICS with BOSE Sir; Website : physicseducour.in