50 PHYSICS with BOSE Sir; Website : physicseducour.in PHYSICS

Fig. 3.14 Motion of an object under free fall. (a) Variation of acceleration with time. (b) Variation of velocity with time. (c) Variation of distance with time

Example 3.6 Galileo's law of odd numbers: "The distances traversed, during equal intervals of time, by a body falling from rest, stand to one another in the same ratio as the odd numbers beginning with unity [namely, 1: 3: 5: 7.....]." Prove it.

Answer Let us divide the time interval of motion of an object under free fall into many equal intervals τ and find out the distances

traversed during successive intervals of time. Since initial velocity is zero, we have

$$y = -\frac{1}{2}gt^2$$

Using this equation, we can calculate the position of the object after different time intervals, 0, τ , 2τ , 3τ ... which are given in second column of Table 3.2. If we take $(-1/2) g\tau^2$ as y_0 —the position coordinate after first time interval τ , then third column gives the positions in the unit of y_o . The fourth column gives the distances traversed in successive τ s. We find that the distances are in the simple ratio 1: 3: 5: 7: 9: 11... as shown in the last column. This law was established by Galileo Galilei (1564-1642) who was the first to make quantitative studies of free fall.

Example 3.7 Stopping distance of				
vehicles : When brakes are applied to a				
moving vehicle, the distance it travels before				
stopping is called stopping distance. It is				
an important factor for road safety and				
depends on the initial velocity (v_0) and the				
braking capacity, or deceleration, $-a$ that				
is caused by the braking. Derive an				
expression for stopping distance of a vehicle				
in terms of v_0 and a .				

Answer Let the distance travelled by the vehicle before it stops be d_s . Then, using equation of motion $v^2 = v_o^2 + 2 \alpha x$, and noting that v = 0, we have the stopping distance

$$d_s = \frac{-v_0^2}{2a}$$

Thus, the stopping distance is proportional to the square of the initial velocity. Doubling the

Table 3.2					
	y	y in terms of y_0 [=(- $\frac{1}{2}$) g τ^2]	Distance traversed in successive intervals	Ratio of distances traversed	
0	0	0			
τ	$-(1/2) \mathrm{g} \tau^2$	y_{\circ}	y_{\circ}	1	
2 τ	$-4(1/2) \mathrm{g} \tau^2$	$4 y_{o}$	$3 y_{\circ}$	3	
3τ	-9(1/2) g τ^2	9 y _°	$5 y_{\circ}$	5	
4 τ	-16(1/2) g τ^2	$16 y_{\circ}$	$7 y_{\circ}$	7	
5τ	$-25(1/2)$ g τ^2	$25 y_{\circ}$	$9 y_{\circ}$	9	
6 τ	-36(1/2) g τ^2	$36 y_{\circ}$	$11 y_{\circ}$	11	

PHYSICS with BOSE Sir; Website : physicseducour.in