48 PHYSICS with BOSE Sir; Website : physicseducour.in PHYSICS

This equation can also be obtained by substituting the value of *t* from Eq. (3.6) into Eq. (3.8). Thus, we have obtained three important equations :

$$v = v_0 + at$$

 $x = v_0 t + \frac{1}{2} at^2$
 $v^2 = v_0^2 + 2ax$ (3.11a)

connecting five quantities v_0 , v, a, t and x. These are kinematic equations of rectilinear motion for constant acceleration.

The set of Eq. (3.11a) were obtained by assuming that at t = 0, the position of the particle, *x* is 0. We can obtain a more general equation if we take the position coordinate at t= 0 as non-zero, say x_0 . Then Eqs. (3.11a) are modified (replacing *x* by $x - x_0$) to :

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2} at^2$$
(3.11b)
$$v^2 = v_0^2 + 2a(x - x_0)$$
(3.11c)

Example 3.3 Obtain equations of motion for constant acceleration using method of calculus.

Answer By definition

 $a = \frac{\mathrm{d}v}{\mathrm{d}t}$

dv = a dtIntegrating both sides

$$\int_{v_0}^{v} \mathrm{d}v = \int_{0}^{t} a \, \mathrm{d}t$$

=a [ˈdt

dt

 $\int_{x_0}^{x} \mathrm{d}x = \int_{0}^{t} v \,\mathrm{d}t$

+ at

(a is constant)

$$v - v_0 = at$$

 $v = v_0$
wther $v = \frac{dx}{dt}$

Further, u

dx = v dtIntegrating both sides

$$= \int_{0}^{t} (v_{0} + at) dt$$

$$x - x_{0} = v_{0} t + \frac{1}{2} a t^{2}$$

$$x = x_{0} + v_{0} t + \frac{1}{2} a t^{2}$$

We can write

$$a = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}t} = v \frac{\mathrm{d}v}{\mathrm{d}x}$$

or, $v \, dv = a \, dx$ Integrating both sides,

$$\int_{v_0}^{v} v \, dv = \int_{x_0}^{x} a \, dx$$
$$\frac{v^2 - v_0^2}{2} = a(x - x_0)$$
$$v^2 = v_0^2 + 2a(x - x_0)$$

The advantage of this method is that it can be used for motion with non-uniform acceleration also.

Now, we shall use these equations to some important cases.

Example 3.4 A ball is thrown vertically upwards with a velocity of 20 m s⁻¹ from the top of a multistorey building. The height of the point from where the ball is thrown is 25.0 m from the ground. (a) How high will the ball rise ? and (b) how long will it be before the ball hits the ground? Take g = 10 m s⁻².

Answer (a) Let us take the *y*-axis in the vertically upward direction with zero at the ground, as shown in Fig. 3.13.

Now
$$v_o = +20 \text{ m s}^{-1}$$
,
 $a = -g = -10 \text{ m s}^{-2}$,
 $v = 0 \text{ m s}^{-1}$

If the ball rises to height y from the point of launch, then using the equation

$$v^2 = v_0^2 + 2 a (y - y_0)$$

we get

 $0 = (20)^2 + 2(-10)(y - y_0)$

Solving, we get, $(y - y_0) = 20$ m.

PHYSICS with BOSE Sir; Website : physicseducour.in