Electrostatic Potential and Capacitance

charge on each capacitor is then Q' = CV'. By charge conservation, Q' = Q/2. This implies V' = V/2. The total energy

of the system is
$$= 2 \times \frac{1}{2} Q'V' = \frac{1}{4} QV = 2.25 \times 10^{-6} \text{ J}$$

Thus in going from (a) to (b), though no charge is lost; the final energy is only half the initial energy. Where has the remaining energy gone?

There is a transient period before the system settles to the situation (b). During this period, a transient current flows from the first capacitor to the second. Energy is lost during this time in the form of heat and electromagnetic radiation.

SUMMARY

- 1. Electrostatic force is a conservative force. Work done by an external force (equal and opposite to the electrostatic force) in bringing a charge q from a point R to a point P is $V_p V_R$, which is the difference in potential energy of charge q between the final and initial points.
- 2. Potential at a point is the work done per unit charge (by an external agency) in bringing a charge from infinity to that point. Potential at a point is arbitrary to within an additive constant, since it is the potential difference between two points which is physically significant. If potential at infinity is chosen to be zero; potential at a point with position vector **r** due to a point charge *Q* placed at the origin is given by

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_o} \frac{Q}{r}$$

3. The electrostatic potential at a point with position vector \mathbf{r} due to a point dipole of dipole moment \mathbf{p} placed at the origin is

$$V(\mathbf{r}) = \frac{1}{4\pi\varepsilon_o} \frac{\mathbf{p.i}}{r^2}$$

The result is true also for a dipole (with charges -q and q separated by 2a) for r >> a.

4. For a charge configuration $q_1, q_2, ..., q_n$ with position vectors $\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_n$, the potential at a point P is given by the superposition principle

$$V = \frac{1}{4\pi\varepsilon_0} \left(\frac{q_1}{r_{1P}} + \frac{q_2}{r_{2P}} + \dots + \frac{q_n}{r_{nP}} \right)$$

where $r_{\rm IP}$ is the distance between $q_{\rm I}$ and P, as and so on.

5. An equipotential surface is a surface over which potential has a constant value. For a point charge, concentric spheres centred at a location of the charge are equipotential surfaces. The electric field **E** at a point is perpendicular to the equipotential surface through the point. **E** is in the direction of the steepest decrease of potential.