Physics

Albert Einstein (1879 – 1955) Einstein, one of the greatest physicists of all time, was born in Ulm, Germany. In 1905, he published three pathbreaking papers. In the first paper, he introduced the notion of light quanta (now called photons) and used it to explain the features of photoelectric effect. In the second paper, he developed a theory of Brownian motion, confirmed experimentally a few years later and provided a convincing evidence of the atomic picture of matter. The third paper gave birth to the special theory of relativity. In 1916, he published the general theory of relativity. Some of Einstein's most significant later contributions are: the notion of stimulated emission introduced in an alternative derivation of Planck's blackbody radiation law, static model of the universe which started modern cosmology, quantum statistics of a gas of massive bosons, and a critical analysis of the foundations of quantum mechanics. In 1921, he was awarded the Nobel Prize in physics for his contribution to theoretical physics and the photoelectric effect.

394

ALBERT EINSTEIN (1879 – 1955)

has energy hv, where h is Planck's constant and v the

frequency of light. In photoelectric effect, an electron z Reasonable absorbs a quantum of energy (hv) of radiation. If this quantum of energy absorbed exceeds the minimum energy needed for the electron to escape from the metall surface (work function ϕ_0), the electron is emitted with maximum kinetic energy

$K_{\rm max} = hv - \phi_0$

(11.2)

More tightly bound electrons will emerge with kinetic energies less than the maximum value. Note that the intensity of light of a given frequency is determined by the number of photons incident per second. Increasing the intensity will increase the number of emitted electrons per second. However, the maximum kinetic energy of the emitted photoelectrons is determined by the energy of each photon.

Equation (11.2) is known as *Einstein's photoelectric equation*. We now see how this equation accounts in a simple and elegant manner all the observations on photoelectric effect given at the end of sub-section 11.4.3.

According to Eq. (11.2), K_{max} depends linearly on v, and is independent of intensity of radiation, in agreement with observation. This has happened because in Einstein's picture, photoelectric effect arises from the absorption of a single quantum of radiation by a single electron. The intensity of radiation (that is proportional to the number of energy quanta per unit area per unit time) is irrelevant to this basic process.
Since K_{max} must be non-negative, Eq. (11.2) implies that photoelectric emission is possible only if

$h v > \phi_0$ or $v > v_0$, where

 $=\frac{\varphi_0}{h} \Rightarrow \gamma_0 \propto \varphi_0$

(11.3)

Equation (11.3) shows that the greater the work function ϕ_0 , the higher the minimum or threshold frequency v_0 needed to emit photoelectrons. Thus, there exists a threshold frequency $v_0 (= \phi_0/h)$ for the metal surface, below which no photoelectric emission is possible, no matter how intense the incident radiation may be or how long it falls on the surface.

• In this picture, intensity of radiation as noted above, is proportional to the number of energy quanta per unit area per unit time. The greater the number of energy quanta available, the greater is the number of electrons absorbing the energy quanta and greater, therefore, is the number of electrons coming out of the metal (for $v > v_0$). This explains why, for $v > v_0$, photoelectric current is proportional to intensity.

2019-20 Explanation for > imac Intervity