Dual Nature of Radiation and Matter

397

$$eV_0 = hv - \phi_0 = \frac{hc}{\lambda} - \phi_0$$

or, $\lambda = hc/(eV_0 + \phi_0)$
$$= \frac{(6.63 \times 10^{-34} \text{ J s}) \times (3 \times 10^8 \text{ m/s})}{(0.60 \text{ eV} + 2.14 \text{ eV})}$$

$$= \frac{19.89 \times 10^{-26} \text{ J m}}{(2.74 \text{ eV})}$$

 $\lambda = \frac{19.89 \times 10^{-26} \text{ J m}}{2.74 \times 1.6 \times 10^{-19} \text{ J}} = 454 \text{ nm}$

Example 11.3 The wavelength of light in the visible region is about 390 nm for violet colour, about 550 nm (average wavelength) for yellowgreen colour and about 760 nm for red colour.

- (a) What are the energies of photons in (eV) at the (i) violet end, (ii) average wavelength, yellow-green colour, and (iii) red end of the visible spectrum? (Take $h = 6.63 \times 10^{-34}$ J s and 1 eV = 1.6×10^{-19} J.)
- (b) From which of the photosensitive materials with work functions listed in Table 11.1 and using the results of (i), (ii) and (iii) of (a), can you build a photoelectric device that operates with visible light?

Solution

Inci

(ii) For

(a) Energy of the incident photon, $E = hv = hc/\lambda$ $E = (6.63 \times 10^{-34} \text{J s}) (3 \times 10^8 \text{ m/s})/\lambda$

$$\frac{1.989 \times 10^{-25} \text{ Jm}}{\lambda}$$

(i) For violet light, $\lambda_1 = 390$ nm (lower wavelength end)

ident photon energy,
$$E_1 = \frac{1.989 \times 10^{-25} \text{ J m}}{390 \times 10^{-9} \text{ m}}$$

= 5.10 × 10⁻¹⁹ J
= $\frac{5.10 \times 10^{-19} \text{ J}}{1.6 \times 10^{-19} \text{ J/eV}}$
= 3.19 eV
yellow-green light, λ_2 = 550 nm (average wavelength)

Incident photon energy, $E_2 = \frac{1.989 \times 10^{-25} \text{ Jm}}{550 \times 10^{-9} \text{ m}}$ = 3.62×10⁻¹⁹ J = 2.26 eV

(iii) For red light, $\lambda_3 = 760$ nm (higher wavelength end)

Encident photon energy,
$$E_3 = \frac{1.989 \times 10^{-25} \text{ Jm}}{760 \times 10^{-9} \text{ m}}$$

= 2.62×10⁻¹⁹ J = 1.64 eV

(b) For a photoelectric device to operate, we require incident light energy *E* to be equal to or greater than the work function ϕ_0 of the material. Thus, the photoelectric device will operate with violet light (with E = 3.19 eV) photosensitive material Na (with $\phi_0 = 2.75 \text{ eV}$), K (with $\phi_0 = 2.30 \text{ eV}$) and Cs (with $\phi_0 = 2.14 \text{ eV}$). It will also operate with yellow-green light (with E = 2.26 eV) for Cs (with $\phi_0 = 2.14 \text{ eV}$) only. However, it will not operate with red light (with E = 1.64 eV) for any of these photosensitive materials.