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of Fig. 7.11 had different masses. How will you
then determine the centre of mass of the lamina?


7.3  MOTION OF CENTRE OF MASS

Equipped with the definition of the centre of

mass, we are now in a position to discuss its

physical importance for a system of n particles.

We may rewrite Eq.(7.4d) as

1 1 2 2 ...i i n nM m m m m= = + + +R r r r r (7.7)

Differentiating the two sides of the equation
with respect to time we get
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or

1 1 2 2 ... n nM m m m= + + +V v v v (7.8)

where  ( )1 1d /dt=v r  is the velocity of the first

particle ( )2 2d dt=v r is the velocity of the

second particle etc. and d /dt=V R  is the

velocity of the centre of mass. Note that we

assumed the masses m
1
, m

2
, ... etc. do not

change in time. We have therefore, treated them

as constants in differentiating the equations

with respect to time.

Differentiating Eq.(7.8) with respect to time,
we obtain
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or

1 1 2 2 ... n nM m m m= + + +A a a a (7.9)

where ( )1 1d /dt=a v  is the acceleration of the

first particle,  ( )2 2d /dt=a v  is the acceleration

of the second particle etc. and  ( )d /dt=A V  is

the acceleration of the centre of mass of the
system of particles.

Now, from Newton’s second law, the force

acting on the first particle is given by 1 1 1m=F a .

The force acting on the second particle is given

by 2 2 2m=F a and so on. Eq. (7.9) may be written

as

1 2 ... nM = + + +A F F F (7.10)

Thus, the total mass of a system of particles
times the acceleration of its centre of mass is
the vector sum of all the forces acting on the
system of particles.

Note when we talk of the force 1F on the first

particle, it is not a single force, but the vector
sum of all the forces on the first particle; likewise
for the second particle etc. Among these forces
on each particle there will be external forces
exerted by bodies outside the system and also
internal forces exerted by the particles on one
another. We know from Newton’s third law that
these internal forces occur in equal and opposite
pairs and in the sum of forces of Eq. (7.10),
their contribution is zero. Only the external
forces contribute to the equation. We can then
rewrite Eq. (7.10) as

extM =A F (7.11)

where extF  represents the sum of all external

forces acting on the particles of the system.
Eq. (7.11) states that the centre of mass

of a system of particles moves as if all the
mass of the system was concentrated at the
centre of mass and all the external forces
were applied at that point.

Notice, to determine the motion of the centre
of mass no knowledge of internal forces of the
system of particles is required; for this purpose
we need to know only the external forces.

To obtain Eq. (7.11) we did not need to
specify the nature of the system of particles.
The system may be a collection of particles in
which there may be all kinds of internal
motions, or it may be a rigid body which has
either pure translational motion or a
combination of translational and rotational
motion. Whatever is the system and the motion
of its individual particles, the centre of mass
moves according to Eq. (7.11).

Instead of treating extended bodies as single
particles as we have done in earlier chapters,
we can now treat them as systems of particles.
We can obtain the translational component of
their motion, i.e. the motion of the centre of mass
of the system, by taking the mass of the whole
system to be concentrated at the centre of mass
and all the external forces on the system to be
acting at the centre of mass.

This is the procedure that we followed earlier
in analysing forces on bodies and solving
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