particles. The centre of mass of the system is that point C which is at a distance *X* from O, where *X* is given by

$$X = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2} \tag{7.1}$$

In Eq. (7.1), *X* can be regarded as the massweighted mean of x_1 and x_2 . If the two particles have the same mass $m_1 = m_2 = m$ then

$$X = \frac{mx_1 + mx_2}{2m} = \frac{x_1 + x_2}{2}$$

Thus, for two particles of equal mass the centre of mass lies exactly midway between them.

If we have *n* particles of masses m_1 , m_2 , ..., m_n respectively, along a straight line taken as the *x*- axis, then by definition the position of the centre of the mass of the system of particles is given by.

$$X = \frac{m_1 x_1 + m_2 x_2 + \dots + m_n x_n}{m_1 + m_2 + \dots + m_n} = \frac{\sum_{i=1}^n m_i x_i}{\sum_{i=1}^n m_i} = \frac{\sum_{i=1}^n m_i x_i}{\sum_{i=1}^n m_i}$$
(7.2)

where $x_1, x_2, ..., x_n$ are the distances of the particles from the origin; *X* is also measured from the same origin. The symbol \sum (the Greek letter sigma) denotes summation, in this case over *n* particles. The sum

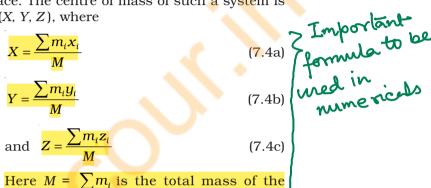
$$\sum m_i = M$$

is the total mass of the system.

Suppose that we have three particles, not lying in a straight line. We may define *x*- and *y*axes in the plane in which the particles lie and represent the positions of the three particles by coordinates $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) respectively. Let the masses of the three particles be m_1, m_2 and m_3 respectively. The centre of mass C of the system of the three particles is defined and located by the coordinates (*X*, *Y*) given by

$$X = \frac{m_1 x_1 + m_2 x_2 + m_3 x_3}{m_1 + m_2 + m_3}$$
(7.3a)

$$Y = \frac{m_1 y_1 + m_2 y_2 + m_3 y_3}{m_1 + m_2 + m_3}$$
(7.3b)


For the particles of equal mass $m = m_1 = m_2$ = m_3 ,

$$X = \frac{m(x_1 + x_2 + x_3)}{3m} = \frac{x_1 + x_2 + x_3}{3}$$

$$Y = \frac{m(y_1 + y_2 + y_3)}{3m} = \frac{y_1 + y_2 + y_3}{3}$$

Thus, for three particles of equal mass, the centre of mass coincides with the centroid of the triangle formed by the particles.

Results of Eqs. (7.3a) and (7.3b) are generalised easily to a system of *n* particles, not necessarily lying in a plane, but distributed in space. The centre of mass of such a system is at (*X*, *Y*, *Z*), where

system. The index *i* runs from 1 to *n*;
$$m_i$$
 is the mass of the *i*th particle and the position of the *i*th particle is given by (x_i, y_i, z_i) .

Eqs. (7.4a), (7.4b) and (7.4c) can be combined into one equation using the notation of position vectors. Let \mathbf{r}_i be the position vector of the *i*th particle and **R** be the position vector of the centre of mass:

$$\mathbf{r}_i = x_i \, \mathbf{\hat{i}} + y_i \, \mathbf{\hat{j}} + z_i \, \mathbf{\hat{k}}$$

and
$$\mathbf{R} = X\mathbf{i} + Y\mathbf{j} + Z\mathbf{k}$$

а

Then $\mathbf{R} = \frac{\sum m_i \mathbf{r}_i}{M}$ (7.4d)

The sum on the right hand side is a vector sum.

Note the economy of expressions we achieve by use of vectors. If the origin of the frame of reference (the coordinate system) is chosen to be the centre of mass then $\sum m_i \mathbf{r}_i = 0$ for the given system of particles.

A rigid body, such as a metre stick or a flywheel, is a system of closely packed particles; Eqs. (7.4a), (7.4b), (7.4c) and (7.4d) are therefore, applicable to a rigid body. The number of particles (atoms or molecules) in such a body is so large that it is impossible to carry out the summations over individual particles in these equations. Since the spacing of the particles is