PHYSICS

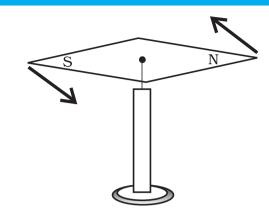
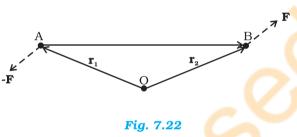



Fig. 7.21(b) The Earth's magnetic field exerts equal and opposite forces on the poles of a compass needle. These two forces form a couple.

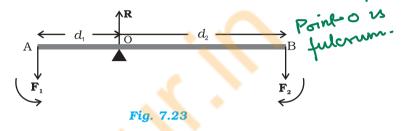
Example 7.7 Show that moment of a ouple does not depend on the point about you take the moments

Answer

Consider a couple as shown in Fig. 7.22 acting on a rigid body. The forces F and -F act respectively at points B and A. These points have position vectors \mathbf{r}_1 and \mathbf{r}_2 with respect to origin O. Let us take the moments of the forces about the origin.

The moment of the couple = sum of the moments of the two forces making the couple

$$= \mathbf{r}_1 \times (-\mathbf{F}) + \mathbf{r}_2 \times \mathbf{F}$$
$$= \mathbf{r}_2 \times \mathbf{F} - \mathbf{r}_1 \times \mathbf{F}$$
$$= (\mathbf{r}_2 - \mathbf{r}_1) \times \mathbf{F}$$


But $\mathbf{r}_1 + \mathbf{AB} = \mathbf{r}_2$, and hence $\mathbf{AB} = \mathbf{r}_2 - \mathbf{r}_1$. The moment of the couple, therefore, is $\mathbf{AB} \times \mathbf{F}$.

Clearly this is independent of the origin, the point about which we took the moments of the forces.

7.8.1 Principle of moments

An ideal lever is essentially a light (i.e. of negligible mass) rod pivoted at a point along its

length. This point is called the fulcrum. A seesaw on the children's playground is a typical example of a lever. Two forces F_1 and F_2 , parallel to each other and usually perpendicular to the lever, as shown here, act on the lever at distances d_1 and d_2 respectively from the fulcrum as shown in Fig. 7.23.

The lever is a system in mechanical equilibrium. Let **R** be the reaction of the support at the fulcrum; **R** is directed opposite to the forces F_1 and F_2 . For translational equilibrium,

$R - F_1 - F_2 = 0 \longrightarrow R = F_1 + F_2$ (i)

For considering rotational equilibrium we take the moments about the fulcrum; the sum

of moments must be zero, $d_1F_1 - d_2F_2 = 0 \longrightarrow d_1F_1 = d_2F_2$ (ii) Normally the anticlockwise (clockwise) moments are taken to be positive (negative). Note R acts at the fulcrum itself and has zero moment about the fulcrum.

In the case of the lever force F_1 is usually some weight to be lifted. It is called the load and its distance from the fulcrum d_1 is called the *load arm*. Force *F*₂ is the *effort* applied to lift the load; distance ${ ilde d}_2$ of the effort from the fulcrum is the *effort arm*.

Eq. (ii) can be written as

$$d_1F_1 = d_2F_2$$
 (7.32a)
or load arm x load = effort arm x effort

The above equation expresses the principle of moments for a lever. Incidentally the ratio F_1/F_2 is called the Mechanical Advantage (M.A.);

M.A.
$$=\frac{F_1}{F_2} = \frac{d_2}{d_1}$$
 (7.32b)

If the effort arm d_{2} is larger than the load arm, the mechanical advantage is greater than one. Mechanical advantage greater than one means that a small effort can be used to lift a large load. There are several examples of a lever around you besides the see-saw. The beam of a balance is a lever. Try to find more such

