the value of the function remains the same. The function f(t) is then periodic and its period, T, is given by

$$T = \frac{2\pi}{\omega}$$
(14.3b)

Thus, the function f(t) is periodic with period T,

$$f(t) = f(t+T)$$

The same result is obviously correct if we consider a sine function, $f(t) = A \sin \omega t$. Further, a linear combination of sine and cosine functions like,

 $f(t) = A \sin \omega t + B \cos \omega t$ (14.3c)is also a periodic function with the same period T. Taking,

$A = D \cos \phi$ and $B = D \sin \phi$

Eq. (14.3c) can be written as,

$$f(t) = D\sin(\omega t + \phi), \qquad (14.3d)$$

Here *D* and ϕ are constant given by

 $D = \sqrt{A^2 + B^2}$ and $\phi = \tan^{-1}\left(\frac{B}{A}\right)$

The great importance of periodic sine and cosine functions is due to a remarkable result proved by the French mathematician, Jean Baptiste Joseph Fourier (1768–1830): Any periodic function can be expressed as a superposition of sine and cosine functions of different time periods with suitable coefficients.

Example 14.2 Which of the following functions of time represent (a) periodic and (b) non-periodic motion? Give the period for each case of periodic motion [ω is any positive constant]. (i) $\sin \omega t + \cos \omega t$ $\sin \omega t + \cos 2 \omega t + \sin 4 \omega t$ **(ii)** (iii) $e^{-\omega}$ (iv) $\log(\omega t)$

Answer

 $\sin \omega t + \cos \omega t$ is a periodic function, it can (i)

also be written as $\sqrt{2} \sin(\omega t + \pi/4)$.

Now
$$\sqrt{2} \sin(\omega t + \pi/4) = \sqrt{2} \sin(\omega t + \pi/4 + 2\pi)$$

$$=\sqrt{2} \sin \left[\omega \left(t + 2\pi/\omega\right) + \pi/4\right]$$

The periodic time of the function is $2\pi/\omega$.

- This is an example of a periodic motion. It (ii) can be noted that each term represents a periodic function with a different angular frequency. Since period is the least interval of time after which a function repeats its value, sin ωt has a period $T_0 = 2\pi/\omega$; cos 2 ωt has a period $\pi/\omega = T_0/2$; and $\sin 4 \omega t$ has a period $2\pi/4\omega = T_0/4$. The period of the first term is a multiple of the periods of the last two terms. Therefore, the smallest interval of time after which the sum of the three terms repeats is T_0 , and thus, the sum is a periodic function with a period $2\pi/\omega$.
- The function $e^{\omega t}$ is not periodic, it (iii) decreases monotonically with increasing time and tends to zero as $t \to \infty$ and thus, never repeats its value.
- (iv) The function $log(\omega t)$ increases monotonically with time t. It, therefore, never repeats its value and is a nonperiodic function. It may be noted that as $t \to \infty$, log(ωt) diverges to ∞ . It, therefore, cannot represent any kind of physical displacement.

SIMPLE HARMONIC MOTION 14.3

Consider a particle oscillating back and forth about the origin of an *x*-axis between the limits +A and –A as shown in Fig. 14.3. This oscillatory motion is said to be simple harmonic if the

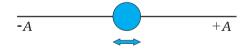


Fig. 14.3 A particle vibrating back and forth about the origin of x-axis, between the limits +Aand -A.

displacement x of the particle from the origin varies with time as :

 $x(t) = A \cos(\omega t + \phi)$

where A, ω and ϕ are constants.

Thus, simple harmonic motion (SHM) is not any periodic motion but one in which

displacement is a sinusoidal function of time.

(14.4)

Fig. 14.4 shows the positions of a particle executing SHM at discrete value of time, each interval of time being T/4, where T is the period