PHYSICS

The damping force depends on the nature of the surrounding medium. If the block is immersed in a liquid, the magnitude of damping will be much greater and the dissipation of energy much faster. The damping force is generally proportional to velocity of the bob. [Remember Stokes' Law, Eq. (10.19)] and acts opposite to the direction of velocity. If the damping force is denoted by \mathbf{F}_{d} , we have

 $\mathbf{F}_{d} = -b$

356

(14.30)

where the positive constant b depends on characteristics of the medium (viscosity, for example) and the size and shape of the block, etc. Eq. (14.30) is usually valid only for small velocity.

When the mass *m* is attached to the spring (hung vertically as shown in Fig. 14.19) and released, the spring will elongate a little and the mass will settle at some height. This position, shown by O in Fig 14.19, is the equilibrium position of the mass. If the mass is pulled down or pushed up a little, the restoring force on the block due to the spring is $\mathbf{F}_s = -k\mathbf{x}$, where \mathbf{x} is the displacement* of the mass from its equilibrium position. Thus, the total force acting on the mass at any time *t*, is $\mathbf{F} = -k\mathbf{x} - b\mathbf{y}$.

If $\mathbf{a}(t)$ is the acceleration of mass at time t, then by Newton's Law of Motion applied along the direction of motion, we have

m a(t) = -k x(t) - b v(t)(14.31) Here we have dropped the vector notation because we are discussing one-dimensional motion.

Using the first and second derivatives of x (t) for v (t) and a (t), respectively, we have

$$m\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + b\frac{\mathrm{d}x}{\mathrm{d}t} + k x = 0 \qquad \text{(14.32)}$$

The solution of Eq. (14.32) describes the motion of the block under the influence of a damping force which is proportional to velocity. The solution is found to be of the form

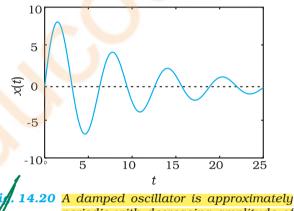
$$x(t) = A e^{-b t/2m} \cos(\omega' t + \phi)$$
(14.33)

where A is the amplitude and ω is the angular frequency of the damped oscillator given by,

$$\omega' = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}$$
(14.34)

In this function, the cosine function has a period $2\pi/\omega'$ but the function x(t) is not strictly periodic because of the factor $e^{-b t/2m}$ which decreases continuously with time. However, if the decrease is small in one time period *T*, the motion represented by Eq. (14.33) is approximately periodic.

The solution, Eq. (14.33), can be graphically represented as shown in Fig. 14.20. We can regard it as a cosine function whose amplitude, which is $Ae^{-bt/2m}$, gradually decreases with time.



periodic with decreasing amplitude of oscillation. With greater damping, oscillations die out faster.

Now the mechanical energy of the undamped oscillator is $1/2 \ kA^2$. For a damped oscillator, the amplitude is not constant but depends on time. For small damping, we may use the same expression but regard the amplitude as $A \ e^{-bt/2m}$.

$$E(t) = \frac{1}{2} k A^2 e^{-b t/m}$$
(14.35)

Equation (14.35) shows that the total energy of the system decreases exponentially with time. Note that small damping means that the

limensionless ratio
$$\left(\frac{b}{\sqrt{km}}\right)$$
 is much less than 1.

* Under gravity, the block will be at a certain equilibrium position O on the spring; *x* here represents the displacement from that position.

$$\alpha = \frac{\partial^2 x}{\partial t^2}$$