Theorem:

When a moving body makes oblique elastic collision with another body of equal mass at rest, after the collision they move in mutually perpendicular direction.

Proof:

```
If the bodies are of equal mass, i.e. if m_1 = m_2 = m (let)
By eq. (xi)
                                  u_1 = v_1 \cos \theta_1 + v_2 \cos \theta_2 \qquad ----- (xiv)
                                  0 = v_1 \sin \theta_1 + v_2 \sin \theta_2 \qquad ----- (xv)
By (xii)
                                        u_1^2 = v_1^2 + v_2^2 ---- (xvi)
And by eq. (xiii)
By (xiv)^2 + (xv)^2
u_1^2 = [v_1^2 \cos^2 \theta_1 + v_2^2 \cos^2 \theta_2 + 2 v_1 \cos \theta_1 v_2 \cos \theta_2] +
                                       [v_1^2 \sin^2 \theta_1 + v_2^2 \sin^2 \theta_2 - 2v_1 v_2 \sin \theta_1 \sin \theta_2]
       u_1^2 = v_1^2 [\cos^2 \theta_1 + \sin^2 \theta_1] + v_2^2 [\cos^2 \theta_2 + \sin^2 \theta_2]
                                         + 2v_1v_2 \{\cos\theta_1 \cos\theta_2 - \sin\theta_1 \sin\theta_2\}
                 u_1^2 = v_1^2 + v_2^2 + 2v_1v_2 \cos(\theta_1 + \theta_2)
                       u_1^2 = u_1^2 + 2v_1v_2 \cos(\theta_1 + \theta_2)
                            2v_1v_2 \cos [\theta_1 + \theta_2] = 0
        \therefore 2v_1v_2 \neq 0, we get \cos [\theta_1 + \theta_2] = 0
                                           \theta_1 + \theta_2 = 90^0
So,
```

i.e. When a moving body makes oblique elastic collision with another body of equal mass at rest, after the collision they move in mutually perpendicular direction.