KINEMATIC EOUATIONS FOR UNIFORMLY ACCELERATED MOTION

(i)
$$v = u + at$$
 or $v = v_0 + at$:

(ii)
$$S = ut + (1/2) at^2$$
 or $x - x_0 = v_0 t + (1/2) at^2$

(iii)
$$V^2 = u^2 + 2aS$$
 or $V^2 = v_0^2 + 2a(x - x_0)$

(iv)
$$S_{nth} = u + (1/2) a(2n-1)$$

CALCULUS METHOD

(i)
$$v = u + at$$
 or $v = v_0 + at$:

By definition
$$a = \frac{dv}{dt}$$
 $Or \ dv = a.dt$

Integrating both sides
$$\int_{V_0}^{V} dV = \int_{0}^{t} a \cdot dt$$

$$[V]_{V_0}^V = a \int_0^t dt \quad \text{ or } \quad V - V_0 = a [t]_0^t$$

$$V - V_0 = a(t - 0)$$

$$Or \qquad V = V_0 + a.t$$

(ii)
$$S = ut + (1/2) at^2$$
 or $x - x_0 = v_0 t + (1/2) at^2$

By definition
$$v = \frac{dx}{dt}$$
 $Or dx = v.dt$

Integrating both sides
$$\int_{x_0}^{x} dx = \int_{0}^{t} v \cdot dt \quad Or \quad \int_{x_0}^{x} dx = \int_{0}^{t} (v_0 + a \cdot t) \cdot dt$$