$$\beta = \frac{\lambda D}{d} \tag{7}$$

Since, β doesn't depend upon m, it is constant i.e. width of all the bright bands is same on the screen.

By equation (5) and equation (7) we get that, $\beta = \beta' = \frac{\lambda D}{d}$ (8)

Thus in interference pattern every fringe is of equal width and present at equal separation. Intensity variation on screen

If I_o represent intensity of each wavelet on the screen, then, the resultant intensity at a point on the screen corresponding to the angular position θ , is given by

Where
$$\phi = \frac{2\pi(d\sin\theta)}{\lambda}$$
(9)

or