$$\Rightarrow \left(\frac{d.y_m}{D}\right) = \pm (2m-1)\frac{\lambda}{2} \Rightarrow y_m = \pm \frac{(2m-1)\lambda D}{2d} \dots (6)$$

Y_m is distance of mth minima from the center of screen.

For m = 1, By equation (6)
$$y'_1 = \pm \frac{\lambda D}{2d}$$

i.e. the 1st order minima lies on either side of the central maxima at a distance $\lambda D/2d$ from the center of the screen

For m = 2, By equation (4),
$$y'_2 = \pm \frac{3\lambda D}{2d}$$

i.e. the 2^{nd} order minima lie on either side of the central maxima at a distance $3\lambda D/2d$ from the center of the screen.

Similarly For m = 3, By equation (4)
$$y_3' = \pm \frac{5\lambda D}{2d}$$

Width of a bright band i.e. the distance between two consecutive minima

$$\beta = y'_m - y'_{m-1}$$