$$(S_2 P - S_2 P) = \frac{2yd}{(S_2 P + S_2 P)}$$
$$\Delta x_g \approx \frac{2yd}{2D} = \frac{yd}{D}$$

Since $\mu = 1$ for air, the optical path difference between the two wavelets

reaching at point P is
$$\Delta x_0 = \left(\frac{d.y}{D}\right)$$
(3)

For constructive interference:

$$\Delta x_0 = \pm n\lambda \qquad (n = 0, 1, 2,)$$

$$\Rightarrow \qquad \left(\frac{d \cdot y_n}{D}\right) = \pm n\lambda \quad \Rightarrow \quad y_n = \pm n\frac{\lambda D}{d} \qquad(4)$$

 y_n is distance of n^{th} maxima from the center of screen.

For n = 0, By equation (4) $y_0 = 0$

i.e. zeroth order maxima or central maxims lies exactly at the center of the screen.

For n = 1, By equation (4), $y_1 = \pm \lambda D/d$