or,

$$\mathbf{X}_{\mathbf{0}} = \frac{2\lambda D}{a}$$

4. Linear position of nth minima – Distance of nth minima from the center of the screen is given by $y_n = \theta_n D$

(As, usually the lens L₂ is kept close to the slit, in numerical problems we can take $D \approx f$) $y_n = \pm \frac{n\lambda D}{a}$

5. Linear position of nth maxima – distance of nth minima from the center of the screen is given by $y_n' = \theta_n' D$

(As, usually the lens L_2 is kept close to the slit, in numerical problems we can take $D \approx f$)

$$\mathbf{y}_{n}' = \pm \frac{(2n+1)\lambda D}{a}$$

Where n = 1, 2, 3,