FORMULAE FOR NUMERICAL CALCULATION

Condition for first order secondary minima is
$$a \sin\theta_1 = \pm \lambda$$
Similarly condition for nth order secondary minima is $a \sin\theta_1 = \pm n \lambda$ Where n = 1, 2, 3,Where n = 1, 2, 3,Condition for first order maxima is $a \sin\theta_1' = \pm \frac{3\lambda}{2}$ Similarly, in general, for nth order maxima $a \sin\theta_n' = \pm (2n+1) \frac{\lambda}{2}$

Where n = 1, 2, 3,

1. Angular position of first order secondary minima –

Since for first order minima condition is a sin $\theta_1 = \pm \lambda$

We get,

Similarly

$$\sin\theta_1 = \pm \frac{\lambda}{a}$$

(If λ is very-very smaller than a (i.e. $\lambda \ll a$), $\angle \theta_1$ is very small and $\sin \theta_1 \approx \theta_1$ (in rad)

So, under the condition $\lambda \ll a$

$$\theta_1$$
 (in rad) = $\pm \frac{\lambda}{a}$