Solution: Δy_0 = displacement of images = 5 β

$$\therefore \frac{D}{d} (\mu - 1)t = 5 \times \frac{\lambda D}{d}$$
$$t = \frac{5\lambda}{\mu - 1} = \frac{5 \times 5890 \times 10^{-8}}{1.52 - 1}$$

or $t = 5.66 \times 10^{-4}$ cm.

Example: In an interference arrangement similar to YDSE, slits S_1 and S_2 are illuminated S₁ with coherent microwave sources each of frequency 10MHz. The sources are d synchronized to have zero phase difference. The slits are separated by S₂ distance 15m. The intensity is measured as a function of θ , θ is defined as shown in the figure. If I_0 is maximum intensity, calculate I_{θ} for (a) $\theta = 0^{0}$ (b) $\theta = 30^{0}$ and (c) $\theta = 90^{0}$

