EXAMPLE: 1.0 m³ of water is converted into 1671 m³ of steam at atmospheric pressure and 100^oC temperature. The latent heat of vaporization of water of water is 2.3 x 10⁶ J/kg. If 2.0 kg of water be converted into steam at atmospheric pressure and 100^oC temperature, then how much will be the increase in its internal energy? (Density of water = 1.0×10^3 kg/m³, atmospheric pressure = 1.01×10^5 Pa)

$$L_{v} = 2:3 \times 10^{6} \text{ J/kg}$$

$$m^{3} \text{ of water} = 1000 \text{ kg} \implies 1 \text{ kg} = \frac{1}{1000} \text{ m}^{3} = 10^{3} \text{ m}^{3}$$

$$2 \text{ kg of water} = 2 \times 10^{3} \text{ m}^{3} = \text{V}_{i} \qquad (1)$$

$$1 \text{ m}^{3} \text{ of water} = 1671 \text{ m}^{3} \text{ of vopour}$$

$$2 \times 10^{3} \text{ m}^{3} \text{ of water} = 1671 \times 2 \times 10^{3} \text{ m}^{3} \text{ of vapour}$$

$$= 3342 \times 10^{3} \text{ m}^{3} \text{ of vopour}$$

$$\text{V}_{i} = 2 \times 10^{3} \text{ m}^{3}, \quad \text{V}_{f} = 3342 \times 10^{3} \text{ m}^{3}$$

$$p = 1 \cdot 01 \times 10^{5} \text{ Pa}$$

4