by
$$\epsilon_{1} \ge 43$$

 $k_{2} = k_{3} \frac{A(T_{1} - T_{2})}{L} = k_{3} \frac{A(T_{2} - 18)}{L}$
 $4k_{x}(T_{1} - T_{2}) = 3k_{x}(T_{2} - 18)$
 $4T_{1} - 4T_{2} = 3T_{2} - 54$
 $4T_{1} - 7T_{2} = -54 - 5$
by solving ϵ_{2} (4) and (5) we get the values
of T_{1} and T_{2} .

EXAMPLE: What is the temperature of the steel-copper junction $L_1 = 15 \text{ cm}$ in the steady state of the system shown in fig. length of the steel $l_2 = 10 \text{ cm}$ rod = 15cm, length of the copper rod = 10cm, temperature of insulator furnace = 300°C. $A_1 = 2A_2$ \mathcal{L}_{I} Furnace Ice Box temperature of the other $K_1 = 50.2 J A^{-1} m C^{-1}$ 300°C 0°C Steel Copper end = 0°C. The area of $k_2 = 385 Jsm^{-1}c^{-1}$ cross-section of the steel rod is twice that of the copper rod.

Thermal conductivity of steel = 50.2 Js⁻¹m⁻¹ °C⁻¹ and that of copper

= 385 Js-1m-1 °C-1