at
$$T=T$$
, length = L \Rightarrow compression = $\Delta L = L - L_0$
 $L = L_0 (1 + \alpha \cdot \Delta T)$
 $L = L_0 + L_0 \alpha \cdot \Delta T \Rightarrow L - L_0 = L_0 \alpha \Delta T - 2$

Strain = $\frac{\Delta L}{L_0} = \frac{L_0 \alpha \Delta T}{L_0} = \alpha \cdot \Delta T - 3$
 $Y = \frac{Thermal stress}{\alpha \cdot \Delta T} \Rightarrow Thermal stress = Y \alpha \cdot \Delta T - 4$
 $\frac{F}{A} = Y \alpha \cdot \Delta T$
 $E = Y \Delta \alpha \Delta T - 5$

Restoring force

A area of cross section of the rod

Example: A brass wire 1.8 m long at 27 °C is held taut with little tension between two rigid supports. If the wire is cooled to a temperature of –39 °C, what is the tension developed in the wire, if its diameter is 2.0 mm? Co-efficient of linear expansion of brass = $2.0 \times 10^{-5} \text{ K}^{-1}$; Young's modulus of brass = $0.91 \times 10^{11} \text{ Pa}$.