Cross product of vectors

The vector product or cross product  of any two vectors and   denoted as  (read  cross ) is denoted as :

                                        

, here θ is the angle between the vectors  and   gives the direction of the product vector. Its direction is perpendicular to the plane containing the two vectors and follows the right-hand-screw rule or right-hand-thumb rule.

Right-Hand-Thumb Rule :

To find the direction of  , drew the two vectors and  with both the tails coinciding. Now place your stretched right palm perpendicular to the plane of and  in such a way that the figures are along the vector  and when the figures are folded they go towards , then the direction of the thumb gives the direction of .

Properties of cross product

  1. Cross product of two vectors is always a vector perpendicular to the plane containing the two vectors i.e. perpendicular to both the vectors  and , through the vectors  and  may or may not be orthogonal.
  2. Vector product of two vectors is not commutative i.e.     

Although,  ,  their direction are different (opposite).

3. The vector product is distributive when the order of the vectors is strictly maintained i.e.             

4. Cross product of a vector to itself is a null vector. 

                                           

5. In case of unit vector 

                             

In case of orthogonal unit vectors  and in accordance with right-hand-thumb-rule,

,      and 

Similarly, if the order of the unit vectors are changed 

                          ,  

6. In terms of components,   

   

Example 1.     is East wards and  is downwards. Find the direction of  ?

Solution .         Applying right hand thumb rule we find that  is along North.

Example 2.     if  , find angle between  and ,

Solution.                        or       AB cos θ = AB sin θ ,    tan θ = 1 ⇒    θ =45º

Cross Product Of Vectors Video

(In Hindi + English Mix)

Example 3.     Two vectors  and  are incline to each other at an angle θ. Find a unit vector which is perpendicular to both and .

Solution.    Since,    

                                            ,   here,  is perpendicular to both and .

Example 4.     Find    if  and 

Solution.     

Example 5.     If  and , Find the vector having the same magnitude as   and parallel to .

Solution.  

                      

The vector having the same magnitude as   and parallel to          .

error: Content is protected !!