$$\Delta p_x = p_{fx} - p_{ix} = m(-u) - m.u$$

or
$$\Delta p_x = -2mu \qquad \dots \qquad (i)$$

$$\Delta p_y = p_{fy} - p_{iy} = m \times 0 - m \times 0$$

$$\Delta p_y = 0$$

Thus the change in momentum of the ball or the impulse on it, is along -ve x-axis. So the force applied by the wall on the ball is along -ve x-axis. So according to IIIrd law force on the wall due to the ball is along +ve x-axis (1 to the surface of the wall).

Force on ball is
$$F = \frac{\Delta p}{\Delta t} = \frac{-2mu}{\Delta t}$$

So, by third Law $F' = -F = \frac{2mu}{\Delta t}$

Method II

$$\Delta \vec{P} = \vec{p}_f - \vec{p}_i$$

= $m\vec{v}_2 - m\vec{v}_1$
= $m - (-u\hat{i}) - m(u\hat{i})$
= $-2mu\hat{i}$

In this case magnitude of impulse is

$$I = |\Delta p|$$

Or

Or
$$I = |\Delta p_x| = 2mu$$

Force on ball is $\vec{F} = \frac{\Delta p}{m} = \frac{-1}{m}$

 $\frac{-2mu}{\Delta t}\hat{i}$ Λt So, by third Law $\vec{F}' = -\vec{F} = \frac{2mu}{\Lambda t}\hat{i}$

Example: A billiard ball strike a rigid wall with some speed u, at angle 30° to the normal and then get reflected without any change in speed at the same angle. What is

..... (ii)

- The magnitude of impulse imposed to the balls by the wall. (iii)
- If the ball remains in contact of wall for a time interval Δt , find the (iv)magnitude and direction of force on the wall due to the ball.

Solution:

$$|\vec{v_1}| = |\vec{v_2}| = u$$
Or
$$v_1 = v_2 = u$$

$$\Delta p_x = p_{xf} - p_{xi} = u$$

$$v_1 = v_2 = u$$

 $\Delta p_x = p_{xf} - p_{xi} = m(-v_2 cos \ 30^\circ) - m(v_1 cos \ 30^\circ)$
 $= -mv_2 cos 30^\circ - mv_1 cos \ 30$

