According to this law, "the rate of change of momentum (mass × velocity) of a body is proportional to the impressed force and it takes place in the direction of the force".

 $\vec{F} = \frac{d}{dt} (m\vec{v}) = m \frac{dv}{dt}$ (consider mass m is constant)

Mathematically
$$\vec{F} \propto \frac{d\vec{p}}{dt} \Rightarrow \vec{F} = k \frac{d\vec{p}}{dt} = \frac{d\vec{p}}{dt}$$

$$\vec{F} = \frac{d\vec{p}}{dt} \text{ (Defining force such a way that k = 1)}$$

$$\vec{F} = m \ \vec{a}$$

In scalar form,
$$F = ma$$

(i)

(ii)

(iv)

This equation is valid only if mass of the body is constant.

(i) Force is a vector quantity, whose unit is Newton or
$$\frac{Kg.m}{cas^2}$$
 (In MKS)

and Dyne or
$$\frac{gm \times cm}{sec^2}$$
 (In C. G. S.)

If m is not constant, then

The second law of motion gives the magnitude and unit of force. (iii)

$$\vec{F} = \frac{d}{dt}(m\vec{v}) = m.\frac{d\vec{v}}{dt} + \vec{v}\frac{dm}{dt}$$

As in case of rocket propulsion, the mass of the fuel varies with respect to time.