$$g' = \frac{N'}{m}$$
 or $g' = g + a$ (iv)

Case (C): When the lift moves down with acceleration 'a'.

i.e, the effective weight of the body inside a lift moving down with acceleration is lesser than its actual weight.

Effective value of acceleration due to gravity

$$g' = \frac{N''}{m}$$

$$g' = g - a$$
 (vi)

If suddenly the rope holding the lift breaks then the lift moves down with

Then by eq. (v)
$$a = g$$

 $N'' = 0$

Or

Or

i.e.,

That is the body feels weightlessness.

Case (D): If the lift is accelerated downwards such that a > g:

In this case by equation (v)

$$\therefore$$
 Apparent weight = m(g - a) = - ve

So the man will be accelerated upward and will stay at the ceiling of the lift.