Case (A): If the lift is un-accelerated i.e. a = 0 (either v = 0 or V = constant)

$$\sum_{i} F_{y} = ma_{y}$$

$$N - mg = 0$$

$$N = mg$$
......(i)

That is effective weight of the body in a lift moving with constant velocity is equal to the actual weight of the body. Effective value of acceleration due to gravity:

$$g' = \frac{N}{m}$$

$$g' = g$$
 (ii)

Case (B): When the lift moves up with acceleration A

i.e.,

$$\sum F_{y} = ma_{y}$$

$$N'-mg = ma$$

$$N' = mg + ma$$

$$N' = m(g + a)$$

$$N' > mg$$
(iii)

i.e., it appears as if the weight of the body (effective weight) has become more than actual weight.

The effective value of acceleration due to gravity inside the lift