Dot products of vectors

When two vectors are multiplied such that the product is a scalar quantity, it is called DOT product or Scalar product.

The scalar product or dot product of any two vectors and  , denoted as .(read dot) is defined as the product of their magnitude with cosine of angle between them.

Thus,                                . = AB cos θ              

{where θ   is the angle between the vectors

Properties of Dot Product

  1. The dot product of two vectors is always a scalar quantity. It is positive, if angle between the vectors is acute (i.e. < 90º) and it is negative, if angle between them is obtuse (i.e.90 < θ  ≤  180º)

2. It is commutative, i.e.

3. It is distributive, i.e.  

4. Scalar product of two vectors will be maximum when cos θ = max = 1, i.e. θ = 0º, i.e. vectors are parallel.

                                     

                                  

5. If the scalar product of two nonzero vectors vanishes then the vectors are orthogonal i.e θ =90º

6. The scalar product of a vectors by itself is termed as self dot product and is given by

                                        

7. In case of unit vector 

                 

                                       

8. In case of orthogonal units

                                                     

9. If vectors are represented in terms of their components, then

                  

10. As by definition

Or                                          

                                  

12. Since,  

Geometrically, B cosθ is the projection (component) of   onto and A cosθ is the projection of  onto  as shown. So  is the product of the magnitude of  and the component of  along   and vice versa.

Magnitude of  the component of  along                                                      

Component  of  along

                                      

Similarly,  Component of  along     

Dot Product Of Vectors Video

(In Hindi + English Mix)

Example: If the vectors  and are perpendicular to each other. Find the value of ‘a’?

Solution.          If vectors  and  are perpendicular

                             

Example:    Find the component of  along 

Solution.          Magnitude of Component of   along   is given by 

                                                                                                                   

                                                                           

                                                                           

Example.     Find angle between 

Solution.          We have cos θ = 

                                             

                                                             

error: Content is protected !!